APPNOTE

GERSTEL AppNote Nr. 229

Automated Liquid-Liquid Extraction and Determination of NBOMes in Serum and Blotter Paper Samples using a Novel Robotic Autosampler and LC-MS/MS Platform

Fred D. Foster and John R. Stuff

GERSTEL, Inc., 701 Digital Drive, Suite J, Linthicum, MD 21090, USA

Keywords

Sample Preparation, LC-MS/MS, High Throughput Lab Automation, Forensics, NPS

Abstract

The forensic community has experienced an increasing emergence of New Psychoactive Substances (NPSs) in recent years. The five main classes of NPSs include the synthetic cannabinoid compounds, stimulants such as the derivatives of cathinone, opioids such as fentanyl, psychedelics, and non-pharmaceutical benzodiazepines. The automated extraction and determination of other classes of NPS compounds using the GERSTEL MultiPurpose Sampler (MPS) robotic^{PRO} have been previously developed and discussed [1,2,3]. In this work, we show that the same robotic sampler can be used to automate the extraction and determination of the psychedelic NPS compounds in serum samples and seized blotter paper samples.

The entire liquid-liquid extraction and subsequent analysis by LC-MS/MS is automated providing critically needed high throughput analysis for the psychedelic NPS compounds in either sample type. Using the GERSTEL MPS robotic^{PRO} sampler, syringe transfer of all liquids involved in the liquid-liquid extraction as well as the controlled mixing, centrifugation, and evaporation of the samples for defined periods are performed. The resulting extracts are introduced into the Agilent Ultivo LC-MS/MS instrument for detection and quantification.

Introduction

Psychedelic compounds, which produce marked alterations in perception, mood, and cognition, are widely used for recreational purposes. The stimulation of the 5- HT_{2A} receptors is required for the psychedelic effects of compounds such as LSD, mescaline, and psilocybin [4]. The first N-(2-methoxybenzyl)phenethylamines (NBOMEs) were originally synthesized in a search for a pharmacological tool to study this 5- HT_{2A} receptor. The first recreationally used NBOMe compound was 25I-NBOMe (2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine). Other NBOMe compounds were then found to be synthesized and introduced into the illicit drug market. For these compounds, the iodine was exchanged for other halogens such as bromine (25B-NBOMe) or chlorine (25C-NBOMe).

GERSTE

MAKING LABS WORK

As a result of this study, we were able to show that automated liquid-liquid extraction performed by the GERSTEL MPS robotic^{PRO} sampler could successfully be used for a variety of NBOMe compounds in either serum or blotter paper samples. NBOMe analytes isolated from the serum or blotter paper samples using the automated extraction procedures were introduced to an Agilent Technologies 1260 HPLC coupled with an Agilent Ultivo Triple Quadrupole Mass Spectrometer with Jet stream electrospray source. The recovery of the NBOMe compounds when extracted from blotter paper samples was found to be 98.9 % for 25B-NBOMe, 93.6 % for 25C-NBOMe, and 97.3 % for 25I-NBOMe. Accuracy data averaged 101 % (range: 96.9 % - 105 %) and precision data averaged 2.22 % RSD (range: 0.790 % - 5.09 %) for all NBOMe compounds extracted from serum samples.

Experimental

APPNOTE

Materials

All stock solutions for the analytes listed in Table 1 were purchased from Cerilliant. An intermediate analyte stock solution was prepared by combining the analyte stock solutions with (1:1) acetonitrile: water, resulting in appropriate concentrations of the drug compounds for method evaluation.

Deuterated analogues, d_3 -25C-NBOMe and d_3 -25I-NBOMe, were purchased from Cerilliant. An internal standard stock solution containing the deuterated internal standards was prepared in (1:1) acetonitrile: water at a concentration of 1000 ng/mL. A working internal standard solution was prepared in (1:1) acetonitrile: water at a concentration of 10 ng/mL. Table 1 shows which deuterated internal standards were used for the quantitation of the respective analytes.

Calibration standard and QC serum samples were prepared by

making appropriate dilutions of the combined intermediate analyte stock solutions using analyte-free rat serum (Biochemed Services) to reach the concentrations listed in Table 1. Calibration standards were prepared using a dilution ratio strategy from the high concentration sample of 1:2:5:2:5:2:5:2:5. The high, middle, and low QC samples were prepared using a dilution ratio strategy from the high concentration sample of 1:10:10. Table 1 lists the concentrations for the highest calibration standard and the limit of quantitation found during this study.

The simulated blotter paper sample replicates were prepared by pipetting 25 μ L of a 200 ng/mL NBOMe intermediate stock solution onto a 1 cm x 1 cm blotter paper sample. Each simulated blotter paper sample was then placed in an open container at room temperature for 2 hours before being transferred into a separate empty vial prior to extraction.

All other reagents and solvents used were reagent grade.

Compound Name	Precursor Ion [m/z]	Produ [m	ct lon /z]	Fragme Volt [\	entation age /]	C [¹	E V]	Ret Time [min]	High Std Conc. [ng/mL]	LOQ [ng/mL]
25I-D ₃ -NBOMe	431.1	124	92	110	110	20	60	4.76	-	-
25I-NBOMe ¹	428.1	120.9	91	110	110	20	60	4.77	100	0.0100
25B-NBOMe ²	382.1	120.9	90.9	110	110	20	60	4.50	100	0.0100
25C-D ₃ -NBOMe	339.1	124	92	110	110	20	50	4.37	-	-
25C-NBOMe ²	336.1	121	91	120	120	15	50	4.38	100	0.0100

Table 1: Mass Spectrometer Acquisition Parameters.

1 - Internal Standard 25I-D₃-NBOMe 2 - Internal Standard 25C-D₃-NBOMe

Instrumentation

All automated Prep Sequences were performed using a MPS robotic^{PRO} sampler with GERSTEL quickMIX, Multi Sample Evaporation Station (mVAP), and CF200 Centrifuge Options as shown in Figure 1. All analyses were performed using an Agilent 1260 HPLC with a Phenomenex Kinetex PFP column, ($3.0 \times 100 \text{ mm}$, 2.6 μ m) and an Agilent Ultivo Triple Quadrupole Mass Spectrometer with Jet stream electrospray source. Sample injections were made using the GERSTEL LCMS Tool into a 6 port (0.25 mm) Cheminert C2V injection valve outfitted with a 2 μ L stainless steel sample loop.

Figure 1: MPS robotic^{PRO} sampler with GERSTEL quickMIX, mVAP, and CF-200 centrifuge options.

GERSTEL MAKING LABS WORK

GERSTEL AppNote Nr. 229

Serum Sample Pretreatment

APPNOTE

- 1. Pipette 500 μL of serum sample into a clean, round bottom 4 mL autosampler vial.
- Pipette 10 μL of a 10 ng/mL working internal standard into each sample and cap with a magnetically transportable cap.
- 3. Automated MPS Prep Sequence for NBOMe Serum Samples
- 4. The MPS adds 0.2 mL of a 0.2 M NaOH solution to each vial.
- 5. The MPS mixes each vial for 30 seconds at 1500 rpm.
- 6. The MPS adds 3 mL of (9:1) hexane: ethyl acetate to each vial.
- 7. The MPS mixes each vial for 5 minutes at 1500 rpm.
- 8. The MPS centrifuges each vial for 10 minutes at 3000 rpm.
- The MPS transfers 2.25 mL of the organic layer into a 10 mL high recovery vial.
- 10. The MPS adds 2.25 mL of (9:1) hexane: ethyl acetate to each vial.
- 11. The MPS mixes each vial for 5 minutes at 1500 rpm.
- 12. The MPS centrifuges each vial for 10 minutes at 3000 rpm.
- 13. The MPS transfers 2.25 mL of the organic layer into the 10 mL high recovery vial.
- 14. The MPS evaporates each 10 mL high recovery vial to dryness at 40 °C, 250 rpm, and 100 mbar.
- The MPS reconstitutes each high recovery vial using 75 μL of (1:1) acetonitrile: water.
- 16. The MPS transfers the final extract into a 2 mL autosampler vial containing a high recovery conical insert.

Blotter Paper Sample Pretreatment

- 1. Transfer a spiked 1 cm x 1 cm blotter paper sample into a clean, round bottom 4 mL autosampler vial.
- 2. Pipette 10 μ L of a 100 ng/mL working internal standard onto each sample and cap with a magnetically transportable cap.

Automated MPS Prep Sequence for NBOMe Blotter Paper Samples

- 1. The MPS adds 1 mL of (1:1) acetonitrile: methanol to each vial.
- 2. The MPS mixes each vial for 5 minutes at 1500 rpm.
- 3. The MPS centrifuges each vial for 10 minutes at 3000 rpm.
- 4. The MPS transfers 75 μ L of water into a 2 mL vial containing a high recovery conical insert.
- 5. The MPS transfers 75 μL of the extract into the 2 mL vial.

Automated MPS Sample Introduction

1. Using the GERSTEL LCMS Tool, the MPS injects the extract into a 2 μL stainless steel sample loop (loop over-fill technique).

LC Method Parameters

Pump	ar)				
	Flow rate = 0.5 r	nL			
Mobile Phase	A – 10 mM ammonium formate in				
	water, with 0.1 % formic acid				
	B – acetonitrile with 0.1 % formic acid				
Gradient	Initial	50 % B			
	4.0 min	95 % B			
	5.0 min	95 % B			
	5.1 min	50 % B			
	10.0 min	50 % B			
Run time	10 minutes				
Injection volume	2.0 µL (loop over	r-fill technique)			
Column Temperature	30 °C				

Mass Spectrometer Parameters

Operation	Electrospray positive mode
Gas Temperature	350 °C
Gas Flow (N_2)	5 L/min
Nebulizer pressure	35 psi
Sheath Gas Flow (N ₂)	11 L/min
Sheath Gas Temperature	400 °C
Capillary voltage	4000 V
Nozzle voltage	500 V
Delta EMV	0 V

The mass spectrometer acquisition parameters are shown in Table 1 with qualifier ions.

Results and Discussion

APPNOTE

Figure 2 shows representative mass chromatograms for the NBOMe compounds and deuterated internal standards determined in an extracted low serum QC sample.

Figure 2: Representative mass chromatograms for extracted low serum QC sample.

The lower limits of quantitation for the drugs of abuse determined using this method were found to be 0.0100 ng/mL as can be seen in Table 1. Representative calibration curves are shown in Figures 3 A-C. Regression analysis resulted in R^2 values of 0.99 or greater.

Figure 3: Calibration curves for 25B-NBOMe (A), 25C-NBOMe (B) and 25I-NBOMe (C).

The accuracy and precision of the method were evaluated for all NBOMe compounds determined using QC samples at high, middle, and low concentrations. Table 2 shows the resulting accuracy and precision data for all drug compounds. Accuracy data averaged 101 % (range: 96.9 % - 105 %) and precision data averaged 2.22 % RSD (range: 0.790 % - 5.09 %) for all NBOMe compounds determined in serum samples.

 Table 2:
 Serum QC sample % accuracy and % precision results.

25B NBOMe serum								
Name	Final Conc.	Accu- racy	Name	Final Conc.	Accu- racy	Name	Final Conc.	Accu- racy
QCL1	0.247	99.0	QC M 1	2.56	102	QC H 1	25.0	99.8
QCL2	0.252	101	QC M 2	2.62	105	QC H 2	25.8	103
QCL3	0.246	98.5	QC M 3	2.48	99.1	QCH3	26.1	104
QCL4	0.218	87.2	QC M 4	2.70	108	QCH4	26.3	105
QCL5	0.243	97.0	QC M 5	2.50	100	QCH5	25.6	103
QCL6	0.247	98.9	QC M 6	2.53	101	QCH6	25.5	102
mean	0.242	96.9	mean	2.56	103	mean	25.7	103
SD	0.0123	4.93	SD	0.0824	3.30	SD	0.472	1.89
% CV	5.09	5.09	% CV	3.21	3.21	% CV	1.84	1.84

25C NBOMe serum								
Name	Final Conc.	Accu- racy	Name	Final Conc.	Accu- racy	Name	Final Conc.	Accu- racy
QC L 1	0.249	99.7	QC M 1	2.65	106	QC H 1	24.7	99.0
QCL2	0.255	102	QC M 2	2.70	108	QC H 2	25.6	102
QCL3	0.248	99.1	QC M 3	2.56	102	QC H 3	25.7	103
QCL4	0.251	100	QC M 4	2.64	106	QCH4	25.7	103
QCL5	0.246	98.3	QC M 5	2.59	104	QCH5	25.5	102
QCL6	0.253	101	QC M 6	2.58	103	QCH6	25.1	100
mean	0.250	100	mean	2.62	105	mean	25.4	102
SD	0.00334	1.34	SD	0.0528	2.11	SD	0.376	1.50
% CV	1.34	1.34	% CV	2.02	2.02	% CV	1.48	1.48

251 NBOMe serum								
Name	Final Conc.	Accu- racy	Name	Final Conc.	Accu- racy	Name	Final Conc.	Accu- racy
QC L 1	0.247	98.7	QC M 1	2.53	101	QCH1	24.6	98.6
QCL2	0.248	99.2	QC M 2	2.66	106	QC H 2	25.0	100
QCL3	0.245	98.2	QC M 3	2.45	98.1	QCH3	25.2	101
QCL4	0.247	98.7	QC M 4	2.63	105	QCH4	24.6	98.5
QCL5	0.242	97.0	QC M 5	2.59	104	QCH5	25.2	101
QCL6	0.246	98.3	QC M 6	2.61	104	QCH6	24.4	97.7
mean	0.246	98.4	mean	2.58	103	mean	24.9	99.4
SD	0.00194	0.777	SD	0.0750	3.00	SD	0.331	1.32
% CV	0.790	0.790	% CV	2.91	2.91	% CV	1.33	1.33

Table 2 (cont.): Serum QC sample % accuracy and % precision results.

To assess the recovery of NBOMe compounds from extracted blotter paper samples, three spiked blotter paper samples were extracted using the automated liquid-liquid extraction procedure and the peak area results were compared to those from six replicate injections of a spiked recovery standard having concentrations equivalent to the extracted NBOMe compounds. Recovery of NBOMe compounds extracted from blotter paper samples was found to be 98.9 % for 25B-NBOMe, 93.6 % for 25C-NBOMe, and 97.3 % for 25I-NBOMe. Together with the data from the extracted serum samples, this data provides evidence that the MPS robotic^{PRO} sampler can be used for the determination of NBOMe compounds in serum samples as well as in blotter paper samples.

Table 3: Results of automated liquid-liquid extraction of simulated blotter paper samples.

25B-NBOMe Results							
Name	Analyte Resp.	Int. Std. Resp.					
Blotter 1:1 extr 1	71270	24320					
Blotter 1:1 extr 2	71277	22699					
Blotter 1:1 extr 3	70998	22530					
mean	71182	23183					
SD	159	988					
% CV	0.224	4.26					
Blotter recov std 1	78924	23807					
Blotter recov std 2	59508	18035					
Blotter recov std 3	68223	21604					
Blotter recov std 4	75150	22476					
Blotter recov std 5	75200	22807					
Blotter recov std 6	74626	22352					
mean	71938	21847					
SD	7004	2000					
% CV	9.74	9.16					
Extraction using	Recovery	Recovery					
(1:1) acetonitrile: methanol	98.9	106					

APPNOTE

Table 3 (cont.): Results of automated liquid-liquid extraction ofsimulated blotter paper samples.

25C-NBOMe Results							
Name	Analyte Resp.	Int. Std. Resp.					
Blotter 1:1 extr 1	127497	24320					
Blotter 1:1 extr 2	128767	22699					
Blotter 1:1 extr 3	125147	22530					
mean	127137	23183					
SD	1837	988					
% CV	1.44	4.26					
Blotter recov std 1	146105	23807					
Blotter recov std 2	112336	18035					
Blotter recov std 3	135112	21604					
Blotter recov std 4	140879	22476					
Blotter recov std 5	141271	22807					
Blotter recov std 6	139504	22352					
mean	135868	21847					
SD	12055	2000					
% CV	8.87	9.16					
Extraction using	Recovery	Recovery					
(1:1) acetonitrile:-	93.6	106					
methanol							

25I-NBOMe Results						
Name	Analyte Resp.	Int. Std. Resp.				
Blotter 1:1 extr 1	134612	24516				
Blotter 1:1 extr 2	133657	23614				
Blotter 1:1 extr 3	134405	23393				
mean	134224	23841				
SD	502	595				
% CV	0.374	2.50				
Blotter recov std 1	150318	25374				
Blotter recov std 2	116831	19256				
Blotter recov std 3	133074	23267				
Blotter recov std 4	142998	24124				
Blotter recov std 5	143521	24441				
Blotter recov std 6	141211	23950				
mean	137992	23402				
SD	11747	2145				
% CV	8.51	9.16				
Extraction using	Recovery	Recovery				
(1:1) acetonitrile:-	97.3	102				
methanol						

Conclusions

As a result of this study, we were able to show:

- Psychedelic NPS compounds and internal standards in serum and blotter paper samples can be successfully extracted using automated liquid-liquid extraction procedures and determined using the Agilent Ultivo Triple Quadrupole Mass Spectrometer.
- These methods were readily automated using the GERSTEL MPS robotic^{PRO} sampler.
- Linear calibration curves resulting in R² values 0.99 or greater were achieved for the NBOMe compounds determined in serum samples.
- The automated LLE-LC-MS/MS method proved to be accurate and precise. Accuracy data averaged 101 % (range: 96.9 % 105 %) and precision data averaged 2.22 % RSD (range: 0.790 % 5.09 %) for all NBOMe compounds analyzed from serum samples.
- The recovery of NBOMe compounds extracted from blotter paper samples was found to be 98.9 % for 25B-NBOMe, 93.6 % for 25C-NBOMe, and 97.3 % for 25I-NBOMe.

References

- GERSTEL Application Note No. 215, Automated Hydrolysis, Extraction and Analysis of Synthetic Cathinones in Urine using a Robotic Autosampler and LC-MS/MS Platform, 2020.
- [2] GERSTEL Application Note No. 199, Automated Hydrolysis, Extraction and Determination of Opioids in Urine using a Novel Robotic Autosampler and LC-MS/MS Platform, 2018.
- [3] GERSTEL Application Note No. 192, Drugs of Abuse in Oral Fluids: Automated SPE Extraction and LC-MS/MS Determination using a Robotic Autosampler, 2017.
- [4] J. Zawilska, M. Kacela, and P.Adamowicz, 2020 "NBOMes Highly Potent and Toxic Alternatives of LSD", Front. Neurosci., 14:78.