GERSTEL MAKING LABS WORK

Drugs of Abuse in Oral Fluids: Automated SPE Extraction and LC/MS/MS Determination using a Robotic Autosampler

Fred D. Foster¹, John R. Stuff¹, Jacqueline A. Whitecavage¹, Edward A. Pfannkoch¹, and Mark Hayward²

¹GERSTEL, Inc., 701 Digital Drive, Suite J, Linthicum, MD 21090, USA ²ITSP Solutions, Inc., 10 South Carolina St, Hartwell, GA 30643, USA

Keywords

Forensics, Sample Preparation, LC/MS/MS, High Throughput Lab Automation, SPE

Abstract

Solid phase extraction (SPE) is one of the sample preparation methods most widely used by chromatographers, as can be seen from the large number of SPE methods found in the literature. Typically, a liquid sample is passed across an adsorbent bed to retain and concentrate target analytes and eliminate interference from the sample matrix. Alternatively, the adsorbent can be used to retain interferences while allowing the target analytes to pass through. Manual SPE cartridge formats can vary from disks to individual cartridges with various volumes of sorbent to 96-well plates. However, solid phase extraction can be tedious and time consuming when performed manually and there is increasing demand for automation of SPE methods.

The MPS robotic^{pro} is a highly efficient LC or GC autosampler with extended robotic functionality. The MPS robotic^{pro} provides reliable processing of complex tasks including automation of SPE procedures. Syringe holders and syringes are integrated in special syringe modules, which can be exchanged automatically within a running sequence for maximum flexibility. The system is controlled in a simple and efficient manner using the proven GERSTEL MAESTRO software. In this study, we show that an existing SPE method using ITSP cartridges [1] can be automated using the MPS robotic^{pro} autosampler under MAESTRO control. An example of a solid phase extraction method illustrating the determination of drugs of abuse in oral fluid is shown.

Introduction

Drug testing based on the analysis of oral fluid samples is increasingly used due to sample collection advantages over other biological matrices and due to the early detection window it offers compared with other approaches. The collection of oral fluid is noninvasive and can be performed under directly observed conditions. The simplicity of collecting an oral fluid sample also reduces the likelihood of test sample adulteration or sample swapping helping to ensure the validity of the results. Some collection devices, including the Quantisal devices [2] used within this study, have an indicator to ensure an exact volume of oral fluid is collected. Following the collection step, the devices are subsequently placed in storage tubes containing stabilization buffer, ensuring that the sample can be shipped or stored for subsequent analysis without analyte degradation.

While the buffer helps to stabilize analytes present in the oral fluid sample, it may also cause analyte suppression effects in the LC/ MS/MS analysis leading to inaccurate results. Prior to analysis, oral fluid samples are typically extracted using SPE to eliminate possible matrix suppression effects and to ensure that the required limits of detection can be met for analytes present at low concentrations in the buffer-diluted matrix. ITSP Solutions, Inc. manufactures miniaturized SPE cartridges that are highly suitable for automation. The MPS robotic^{pro} offers highly accurate and precise control of the flow rate and volume of solutions used in the SPE process to clean, pre-concentrate, and elute drugs of abuse from oral fluid samples prior to analysis. An existing manual SPE method using ITSP cartridges was automated using the MPS robotic^{pro}.

APPNOTE

GERSTEL AppNote 192

Data obtained through this study demonstrate the successful coupling of the MPS robotic^{pro} to an Agilent 6470 LC/MS/MS system providing a completely automated solution for the extraction and analysis of drugs of abuse in oral fluid samples.

Experimental

Materials

All stock solutions for the compounds listed in Table 1 were purchased from Cerilliant. An intermediate analyte stock solution was prepared by combining the analyte stock solutions with Acetonitrile, at appropriate concentrations, to evaluate the different drug classes. Deuterated analogues, d₃-Morphine, d₅-Fentanyl, d₅-Nordiazepam, d₅-Propoxyphene, d₇-Carisoprodol, d₆-Amphetamine, d₄-Ketamine, d₄-Meperidine, d₄-7-Aminoclonazepam, d₅-PCP, d₉-Methadone, d₄-Bupreonorphine, d₃-Norbuprenorphine, d₃-Tramadol-C13, d₄-Clonazepam, d₅-Oxazepam, d₅-Estazolam, d₅-a-Hydroxyalprazolam, d₅-MDA, d₅-MDMA, d₅-Methamphetamine, d₃-Amitriptyline, and d₃-Cocaine were purchased from Cerilliant. A working internal standard stock solution containing the deuterated internal standards was prepared at a concentration of 1000 ng/mL and used as internal standards for the drug classes being evaluated. Table 1 shows which deuterated internal standard was used with each respective analyte during quantitation.

Table 1: Mass spectrometer acquisition parameters.

Compound Name	Precursor Ion [m/z]	Product Ion [m/z]		Fragmentor Voltage [V]		Collision Energy [V]		Ret. Time [min]	High Std Conc. [ng/mL]	Limit of Quant. [ng/mL]
6-Monoacetylmorphine ¹	328.2	165.1	58.1	158	158	41	29	1.92	100	1
7-Aminoclonazepam ²	286.1	222.1	121.1	138	138	25	33	2.49	500	5
α-Hydroxyalprazolam ⁶	325.1	297	216	150	150	28	41	3.68	200	2
Alprazolam ³	309.1	281	205	179	179	25	49	3.82	400	4
Amitriptyline ⁴	278.2	233	117	130	130	15	20	3.7	250	2.5
Benzoylecgonine ⁷	290.1	168.1	105	118	118	17	29	2.34	250	2.5
Bromazepam ⁶	316	209	182.1	150	150	25	37	3.44	400	4
Buprenorphine ⁸	468.3	396.2	55.1	200	200	41	60	3.41	100	1
Carisoprodol ⁹	261.2	176.1	97.1	80	80	1	10	3.76	500	5
cis-Tramadol ²³	264.2	58.1	42.1	107	107	16	108	2.52	250	2.5
Clobazam ⁶	301.1	259	244.1	138	138	17	33	3.73	400	4
Clonazepam ¹⁰	316.1	270.1	214	158	158	25	41	3.56	400	4
Cocaine ⁷	304.2	182.1	77	138	138	17	61	2.54	250	2.5
Codeine ¹	300.2	165.1	128	158	158	45	60	1.76	500	5
d ₃ -Amitriptyline	281.3	233.1	117.1	150	150	20	25	3.7	-	-
d ₃ -cis-Tramadol-13C	268.2	58.1	-	102	-	16	-	2.51	-	-
d ₃ -Cocaine	307.2	85.1	77	133	133	32	64	2.54	-	-
d ₃ -Morphine	289	165.1	152	153	153	40	68	1.2	-	-
d ₃ -Norbuprenorphine	417.3	152	55.1	190	190	124	76	2.97	-	-
d ₄ -7-Aminoclonazepam	290.1	198.1	-	140	-	35	-	2.47	-	-
d ₄ -Buprenorphine	472.3	400.2	59.1	210	210	44	60	3.38	-	-
d ₄ -Clonazepam	320.1	218	154	144	144	40	84	3.55	-	-
d₄-Ketamine	242.1	129	119	102	102	32	68	2.37	-	-
d ₄ -Merperidine	252.2	105	42.1	138	138	48	64	2.68	-	-
d _s -α-Hydroxyalprazolam	330.1	302.1	210.1	179	179	28	52	3.51	-	-
d ₆ -Amphetamine	141.1	124.1	93.1	70	70	5	33	2.01	-	-
d ₅ -Estazolam	300	272	-	140	-	25	-	3.69	-	-

APPNOTE

Table 1 (cont.): Mass spectrometer acquisition parameters.

Compound Name	Precursor Ion	Proo	duct	Fragmentor Voltage				Ret. Time	High Std Conc.	Limit of Quant.
	[m/z]	[m		/]			√]	[min]	[ng/mL]	[ng/mL]
d _s -Fentanyl	342.3	188.1	105.1	92	92	24	44	3.01	-	-
d₅-MDA	185.1	168.1	110.1	61	61	10	21	2.04	-	-
d ₅ -MDMA	199.2	165.1	107.1	92	92	8	24	2.07	-	-
d ₅ -Methamphetamine	155.2	121.1	92	82	82	8	20	2.07	-	-
d₅-Nordiazepam	276.1	213.1	140.1	61	61	28	28	4.02	-	-
d₅-Oxazepam	292.1	246.1	109	123	123	24	40	3.77	-	-
d₅-PCP	249.3	96.1	86.1	97	97	36	8	2.95	-	-
d ₅ -Propoxyphene	345.3	271.2	58.1	117	117	4	16	3.58	-	-
d ₇ -Carisoprodol	268.2	183.2	165.2	81	81	0	4	3.74	-	-
d ₉ -Methadone	319.3	268.1	-	118	-	12	-	3.65	-	-
d-Amphetamine	136.1	119.1	91	66	66	5	17	2.03	1000	10
Diazepam ¹¹	285.1	257.1	154	169	169	25	25	4.15	400	4
EDDP ¹²	278.2	234.1	219.1	158	158	33	45	3.18	500	5
Estazolam ¹³	295.1	267.1	205.1	159	159	21	45	3.7	400	4
Fentanyl ¹⁴	337.2	188.1	105.1	143	143	21	41	3.02	10	0.1
Flunitrazepam ¹³	314.1	268.1	239.1	153	153	25	37	3.61	400	4
Flurazepam ⁶	388.2	317.1	315	158	158	17	21	3.22	400	4
Hydrocodone ¹	300.2	199	128	159	159	29	65	1.9	500	5
Hydromorphone ¹	286.2	185	157	159	159	29	45	1.42	500	5
Ketamine ¹⁵	238.1	220.1	125	105	105	11	11	2.38	1000	10
Lorazepam ⁹	321	275	194	102	102	21	49	3.78	400	4
MDA ¹⁶	180.1	163	135	61	61	5	17	2.04	1000	10
MDEA ¹⁶	208.1	163	135	107	107	9	21	2.22	1000	10
MDMA ¹⁷	194.1	163	105	97	97	9	25	2.08	1000	10
Meperidine ¹⁸	248.2	220.1	174.1	128	128	21	17	2.69	500	5
Meprobamate ¹²	219.1	158	97	65	65	1	7	2.97	500	5
Methadone ¹⁹	310.2	265.1	105	112	112	9	29	3.67	500	5
Methamphetamine ²⁰	150.1	119	91	92	92	5	17	2.09	1000	10
Methylphenidate ²	234.1	84.1	56.1	112	112	21	53	2.59	500	5
Midazolam ¹³	326.1	291.1	249.1	170	170	29	41	3.51	400	4
Morphine ¹	286.2	165.1	152	158	158	41	60	1.2	500	5
Nitrazepam ¹³	282.1	236.1	180	148	148	25	41	3.55	400	4
Norbuprenorphine ²¹	414.3	187.1	83.1	205	205	41	57	2.98	100	1
Nordiazepam ¹¹	271.1	165	140	138	138	25	29	4.03	400	4
Norfentanyl ¹⁴	233.2	84.1	55.1	112	112	16	40	2.58	10	0.1
Norketamine ¹⁵	224	207	125	92	92	8	24	2.4	1000	10
Normeperidine ¹⁸	234.2	160.1	56.1	138	138	12	20	2.75	500	5
Norpropoxyphene ⁸	308.2	100.1	44.1	107	107	8	20	3.41	1000	10
o-Desmethyltramadol ⁵	250.1	58.1	42.1	97	97	16	104	2.06	250	2.5

22 d₅-Propoxyphene

d₂-Tramadol-C13

23

GERSTEL AppNote 192

APPNOTE

Table 1 (cont.): Mass spectrometer acquisition parameters.

Compound Name	Precursor Ion [m/z]	n lon		Fragmentor Voltage [V]		Collision Energy [V]		Ret. Time [min]	High Std Conc. [ng/mL]	Limit of Quant. [ng/mL]
Oxazepam ³	287.1	269	241	133	133	20	21	3.78	400	4
Oxycodone ¹	316.2	298.1	241.1	143	143	17	29	1.84	500	5
Oxymorphone ¹	302.1	227.1	198.1	133	133	28	48	1.29	500	5
PCP ¹²	244.2	91	86.1	86	86	41	9	2.96	50	0.5
Propoxyphene ²²	340.2	266.2	58.1	92	92	5	25	3.6	1000	10
Temazepam ¹¹	301.1	255.1	177	117	117	29	45	3.9	400	4
Triazolam ¹³	343.1	308.1	239	160	160	30	50	3.79	400	4
1 d ₃ -Morphine 6 d ₅ -α-Hydr	11 d _s -Nordiazepam		epam	16 d _s -MDA		21 d ₃ -Norbuprenorphine				

d₃-Morphine 2

7 d₃-Cocaine d₄-7-Aminoclonazepam 8 d₄-Buprenorphine

3 d₅-Oxazepam

4 d,-Amitriptyline

5 d₅-Amphetamine 9 d₇-Carisoprodol 10 d_-Clonazepam

12 d_s-PCP

13 d_s-Estazolam

14 d₅-Fentayl

15 d,-Ketamine

17 d₅-MDMA

18 d₄-Merperidine

19 d_o-Methadone

20 d_e-Methamphetamine

GERSTEL

Figure 1: GERSTEL MultiPurpose Sampler (MPS robotic^{pro}) with **GERSTEL ITSP Option.**

Oral fluid matrix was collected from a male volunteer using Quantisal Saliva Collection Devices, (cat.#QS-0025) received from Immunalysis. High concentration calibration standard and intermediate QC oral fluid samples were prepared by making appropriate dilutions of the combined intermediate analyte stock solution using analyte free oral fluid to give the concentrations in saliva listed in Table 1. Calibration standards were then prepared using a dilution ratio strategy from the high concentration sample of 1:2:2:2.5:2:5. The QC samples were prepared using a dilution ratio strategy from the high concentration sample of 1.33:3.33:3. Table 1 lists the concentrations for the highest calibration standard and the limits of quantitation found during analyses.

All other reagents and solvents used were reagent grade.

Instrumentation

All automated SPE PrepSequences were performed using a Multi-Purpose Sampler (MPS roboticpro) equipped with GERSTEL ITSP Option as shown in Figure 1. All analyses were performed using an Agilent 1290 HPLC with a Poroshell 120 C18 column (3.0 x 50 mm, 2.7 µm) and an Agilent 6470 Triple Quadrupole Mass Spectrometer with jet stream electrospray source. The GERSTEL MPS roboticpro was configured with LCMS Tool, a Universal Syringe Module (USM) with a 100 μ L syringe, and a USM with a 1000 μ L syringe. Sample injections were made using a 6 port (0.25 mm) Cheminert C2V injection valve outfitted with a 2 µL stainless steel sample loop.

The automated SPE extraction used for this method consisted of the following steps:

Automated SPE Prep Sequence

- The user transfers 1.5 mL of oral fluid sample into a 2 mL vial.
- Working internal standard (15 µL) is added to the sample and the sample is mixed.
- Conditioning buffer (150 µL) (20% ammonium acetate in water (w/w)) is added to the sample and the sample is mixed.
- The ITSP SPE cartridge (UCT C18 endcapped, 10 mg) is washed using 100 µL of wash solvent (0.2% ammonium acetate in water) followed by 100 µL of the conditioning buffer.
- The oral fluid sample (1 mL) is added to the ITSP SPE cartridge at a flow rate of 5 µL/sec.
- The ITSP SPE cartridge is washed using 100 µL of the conditioning buffer.
- The analytes are then eluted from the ITSP SPE cartridge using 2 x 75 µL aliquots of the buffered elution solvent (0.2% ammonium acetate in methanol) and then diluted (1:2) using the wash solvent to ensure good chromatography and separation of isobaric compounds.

Analysis Conditions LC		
Pump	gradient (600 ba	ar),
	flowrate = 0.5 m	ıL/min
Mobile Phase	A - 5 mM ammo	nium formate with
	0.05%	formic acid
	B - 0.05% formio	c acid in methanol
Gradient	Initial	5% B
	0.5 min	5% B
	1.5 min	30% B
	3.5 min	70% B
	4.5 min	95% B
	6.49 min	95% B
	6.5 min	5% B
Run time:	6.5 minutes	
Injection volume	2.0 µL (loop ove	r-fill technique)
Column temperature	55 °C	
Analysis Conditions MS		
Operation	electrospray pos	sitive mode
Gas temperature	350°C	
Gas flow (N_2)	5 L/min	
Nebulizer pressure	35 psi	
Sheath gas heater	250 °C	
Sheath gas flow (N_2)	11 L/min	
Capillary voltage	4000 V	
delta EMV	+ 500 V	
delta RT (min)	0.5 min	

The mass spectrometer acquisition parameters are shown in Table 1 with qualifier ions. A retention time window value of 0.5 minute was used for each positive ion transition being monitored over the course of the dynamic MRM experiment.

APPNOTE

GERSTEL AppNote 192

Results and Discussion

Figure 2 shows representative mass chromatograms for all drugs of abuse, along with their respective qualifier ion transitions, from an extracted low QC sample.

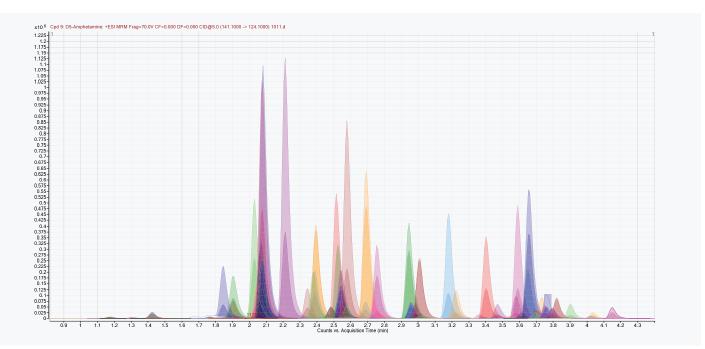
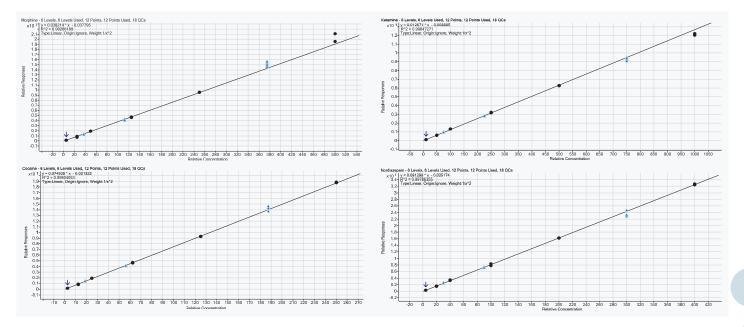



Figure 2: Representative mass chromatograms for low QC sample.

The lower limits of quantitation of this method are shown in Table 1. Representative calibration curves are shown in Figures 3 a-d. Regression analysis for all drugs of abuse analyzed within this method resulted in R^2 values of 0.99 or greater.

Figures 3 a-d: Representative calibration curves: Morphine, Ketamine, Cocaine, and Nordiazepam.

The accuracy and precision of the method was measured for all determined drugs of abuse using QC samples at high, middle, and low concentrations. Table 2 shows the resulting accuracy and

precision data for all drug compounds. Accuracy data averaged 101% (range: 86.3% - 113%) and precision data averaged 5.97% RSD (range: 0.840% -16.7%) for all drugs of abuse analyzed.

 Table 2: QC samples accuracy and precision table.

Compound	QC Level	Exp. Conc. [ng/mL]	Ave. Conc. [ng/mL]	Ave. Prec. [%]	Ave. Acc. [%]
	low	37.50	37.33	4.22	99.6
Morphine	middle	112.50	112.13	2.83	99.7
	high	375.00	394.87	2.93	105
	low	37.50	38.15	10.6	102
Oxymorphone	middle	112.50	107.87	8.14	95.9
	high	375.00	402.38	2.66	107
	low	37.50	36.62	7.47	97.7
Hydromorphone	middle	112.50	112.91	10.2	100
	high	375.00	383.91	4.31	102
	low	37.50	35.98	10.9	95.9
Oxycodone	middle	112.50	109.95	11.5	97.7
	high	375.00	397.98	6.17	106
Codeine	low	37.50	36.77	6.13	98.1
	middle	112.50	112.30	10.7	99.8
	high	375.00	400.84	6.74	107
Hydrocodone	low	37.50	36.52	7.57	97.4
	middle	112.50	110.58	12.1	98.3
	high	375.00	399.43	7.99	107
	low	7.50	7.07	12.6	94.2
6-Monoacetylmorphine	middle	22.50	21.46	10.4	95.4
	high	75.00	77.98	7.53	104
	low	75.00	77.62	5.25	103
d-Amphetamine	middle	225.00	222.67	6.83	99.0
	high	750.00	736.09	2.81	98.1
	low	75.00	74.51	7.04	99.3
MDA	middle	225.00	228.47	3.80	102
	high	750.00	777.13	1.52	104
	low	18.75	17.70	10.7	94.4
o-Desmethyl-cis-Tramadol	middle	56.25	52.76	5.86	93.8
	high	187.50	189.41	3.27	101
	low	75.00	79.81	2.07	106
MDMA	middle	225.00	230.92	1.40	103
	high	750.00	688.05	2.75	91.7
	low	75.00	80.14	0.95	107
Methamphetamine	middle	225.00	231.32	1.83	103
	high	750.00	685.97	2.58	91.5

 Table 2 (cont.): QC samples accuracy and precision table.

Compound	QC Level	Exp. Conc. [ng/mL]	Ave. Conc. [ng/mL]	Ave. Prec. [%]	Ave. Acc. [%]
	low	75.00	74.03	16.7	98.7
MDEA	middle	225.00	232.82	9.27	103
	high	750.00	674.94	5.25	90.0
	low	18.75	19.64	9.01	105
Benzoylecgonine	middle	56.25	57.09	8.14	101
	high	187.50	174.56	6.44	93.1
	low	75.00	79.04	1.84	105
Ketamine	middle	225.00	224.85	1.00	99.9
	high	750.00	735.79	1.68	98.1
	low	75.00	80.74	2.77	108
Norketamine	middle	225.00	220.51	3.10	98.0
	high	750.00	679.57	6.54	90.6
7-Aminoclonazepam	low	37.50	41.07	5.17	110
	middle	112.50	112.97	7.10	100
	high	375.00	360.04	1.53	96.0
	low	18.75	19.09	3.32	102
cis-Tramadol	middle	56.25	55.52	1.94	98.7
	high	187.50	187.94	1.66	100
	low	18.75	19.83	1.42	106
Cocaine	middle	56.25	55.93	0.839	99.4
	high	187.50	190.39	2.07	102
	low	37.50	36.18	12.5	96.5
Methylphenidate	middle	112.50	116.27	4.01	103
	high	375.00	323.44	6.25	86.3
	low	0.75	0.79	7.57	105
nor-Fentanyl	middle	2.25	2.30	11.6	102
	high	7.50	7.40	3.50	98.6
	low	37.50	40.36	2.10	108
Meperidine	middle	112.50	114.59	1.08	102
	high	375.00	338.37	3.96	90.2
	low	37.50	39.11	3.27	104
Normeperedine	middle	112.50	108.38	6.36	96.3
	high	375.00	401.52	3.71	107
	low	3.75	3.91	3.26	104
PCP	middle	11.25	11.05	4.58	98.2
	high	37.50	36.29	2.44	96.8
	low	7.50	7.93	9.19	106
Norbuprenorphine	middle	22.50	21.77	3.76	96.8
	high	75.00	82.16	3.12	110

Table 2 (cont.): QC samples accuracy and precision table.

Compound	QC Level	Exp. Conc. [ng/mL]	Ave. Conc. [ng/mL]	Ave. Prec. [%]	Ave. Acc. [%]
	low	37.50	42.32	8.04	113
Meprobamate	middle	112.50	112.85	9.57	100
	high	375.00	383.05	5.44	102
	low	0.75	0.80	6.74	107
Fentanyl	middle	2.25	2.26	4.73	101
	high	7.50	7.58	2.67	101
	low	37.50	42.24	4.43	113
EDDP	middle	112.50	111.29	8.59	98.9
	high	375.00	336.16	6.54	89.6
	low	30.00	27.88	13.2	92.9
Flurazepam	middle	90.00	88.73	11.2	98.6
	high	300.00	324.10	7.52	108
Buprenorphine	low	7.50	8.03	2.63	107
	middle	22.50	22.93	5.02	102
	high	75.00	73.33	2.93	97.8
Norpropoxyphene	low	75.00	80.56	11.5	107
	middle	225.00	240.51	6.41	107
	high	750.00	818.57	4.99	109
	low	30.00	30.43	13.1	101
Bromazepam	middle	90.00	87.70	7.60	97.4
	high	300.00	264.41	3.73	88.1
	low	30.00	32.15	6.99	107
Midazolam	middle	90.00	88.32	10.4	98.1
	high	300.00	287.62	5.63	95.9
	low	30.00	29.50	6.55	98.3
Nitrazepam	middle	90.00	86.22	4.57	95.8
	high	300.00	322.20	7.84	107
	low	30.00	29.98	9.95	99.9
Clonazepam	middle	90.00	90.16	5.26	100
	high	300.00	314.85	9.65	105
	low	75.00	81.95	2.02	109
Propoxyphene	middle	225.00	228.13	1.40	101
	high	750.00	757.73	1.99	101
	low	30.00	32.87	8.52	110
Flunitrazepam	middle	90.00	90.22	9.27	100
	high	300.00	280.19	5.23	93.4
	low	37.50	39.83	2.59	106
Methadone	middle	112.50	114.20	1.72	102
	high	375.00	387.75	1.18	103

 Table 2 (cont.): QC samples accuracy and precision table.

Compound	QC Level	Exp. Conc. [ng/mL]	Ave. Conc. [ng/mL]	Ave. Prec. [%]	Ave. Acc. [%]
	low	15.00	14.40	7.82	96.0
lpha-Hydroxyalprazolam	middle	45.00	43.78	10.7	97.3
	high	150.00	160.12	2.69	107
	low	18.75	19.65	3.57	105
Amitriptyline	middle	56.25	57.02	2.34	101
	high	187.50	194.99	3.17	104
	low	30.00	29.47	5.25	98.2
Estazolam	middle	90.00	85.43	5.94	94.9
	high	300.00	310.11	5.52	103
	low	30.00	29.60	9.79	98.7
Clobazam	middle	90.00	90.88	8.70	101
	high	300.00	288.37	7.24	96.1
Carisoprodol	low	37.50	38.24	2.07	102
	middle	112.50	111.42	2.29	99.0
	high	375.00	380.03	2.32	101
Lorazepam	low	30.00	29.26	12.8	97.5
	middle	90.00	88.37	10.1	98.2
	high	300.00	320.44	8.28	107
	low	30.00	30.64	11.7	102
Oxazepam	middle	90.00	88.44	3.83	98.3
	high	300.00	297.64	4.96	99.2
	low	30.00	30.96	12.6	103
Triazolam	middle	90.00	88.26	4.83	98.1
	high	300.00	298.83	8.66	99.6
	low	30.00	31.91	6.84	106
Alprazolam	middle	90.00	88.32	3.72	98.1
	high	300.00	326.19	12.4	109
	low	30.00	31.32	6.14	104
Temazepam	middle	90.00	88.48	4.64	98.3
	high	300.00	282.74	15.0	94.2
	low	30.00	32.08	2.52	107
Nordiazepam	middle	90.00	90.99	1.73	101
	high	300.00	290.32	3.62	96.8
	low	30.00	32.09	3.74	107
Diazepam	middle	90.00	92.49	8.51	103
	high	300.00	325.81	11.2	109

APPNOTE

The LCMS Tool eliminates sample-to-sample carryover. This is especially important given today's extremely sensitive LC/MS/MS systems. The method was evaluated for any potential carryover by extracting and analyzing a high concentration standard followed by the injection and analysis of a solvent blank and comparing the

results of the blank to that of an extracted low standard. Figure 4 shows a comparison of an extracted low standard (blue TIC) to that of the solvent blank (orange TIC). In the solvent blank trace, no response was found at the retention times of any of the analytes in the low standard.

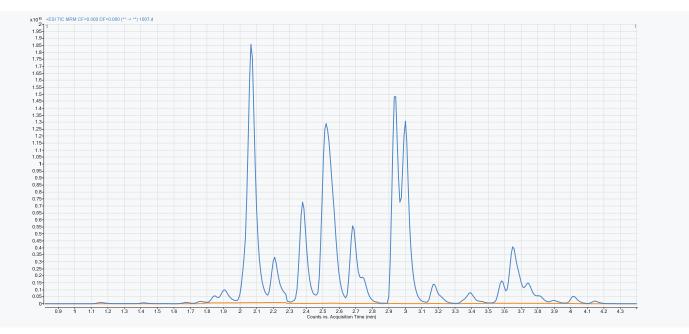


Figure 4: Overlay mass chromatogram results from carryover evaluation.

Conclusions

As a result of this study, we were able to show:

- Over 50 drugs of abuse and internal standards can be successfully extracted from oral fluid samples using an automated SPE procedure coupled to LC/MS/MS analysis using the Agilent 6470 Triple Quadrupole Mass Spectrometer.
- This method proved to be readily automated using the GER-STEL MultiPurpose Sampler (MPS roboticpro).
- Linear calibration curves resulting in R² values 0.99 or greater were achiived for the determined drugs of abuse.
- The SPE-LC/MS/MS method proved to be accurate and precise. Accuracy data averaged 101% (range: 86.3% - 113%) and precision data averaged 5.97% RSD (range: 0.840% -16.7%) for all determined drugs of abuse.
- Evaluation of the method showed no detectable carryover following injection of an extracted high standard.

References

- Drugs of abuse measured in urine or oral fluid for forensic and medical purposes. ITSP Solutions, Inc. Application Note, accessed April 2017.
- [2] Quantisal oral fluid collection device (2017, January) Immunalysis Product Catalog, Jan 2017, retrieved from https://immunalysis.com/products/oral-fluid/quantisal/.

"For drug screening use only. Not for use in diagnostic procedures." The information provided for this product is intended for reference and research purposes only. GERSTEL offers no guarantee as to the quality and suitability of this data for your specific application. Information, descriptions and specifications in this publication are subject to change without notice.