The Analysis of the Bitter and Other Flavour Compounds in Beer and Wort by Stir Bar Sorptive Extraction (SBSE) Followed by HPLC

Diedrich Harms, Frank Nietzsche
König Brauerei GmbH & Co. KG, Friedrich-Ebert-Strasse 255-263, D-47139 Duisburg, Germany

Andreas Hoffmann
Gerstel GmbH & Co. KG, Eberhard-Gerstel-Platz 1, D-45473 Mülheim an der Ruhr, Germany

Frank David
Research Institute for Chromatography, Kennedypark 20, B-8500 Kortrijk Belgium

Pat Sandra
Department of Organic Chemistry, University of Gent, Krijgslaan 281 S4, B-9000 Gent, Belgium

INTRODUCTION
Generally the analysis of the bitter principles in beer and wort is done by liquid/liquid extraction [1] or C8 SPE extraction followed by HPLC analysis [2]. Unfortunately, there is a lack of reproducibility, a high consumption of organic solvents and only the main compounds i.e. the humulones and iso-humulones, can be monitored by this methodology. Hops contain hundreds of components, however of particular interest for a brewer are the main hop α- and β-acids (Figure 1).
These compounds are the precursors of beer bitterness. During wort boiling a thermal isomerisation, an acyloin-type ring contraction, converts the α-acids into iso-α-acids. Each α-acid gives rise to two enantiomeric iso-α-acids (example of humolone 1a shown in Figure 2).

Consequently, 6 major iso-α-acids are present in beer resulting from the conversion of the 3 major α-acids, humolone, cohumolone and adhumolone, respectively.

There is a need, however, for a method with which other flavour compounds derived from hops can be monitored during the production process (in wort) and in the final product beer. Additionally the sample preparation should be optimized for time and costs. A new sample preparation technique namely Stir Bar Sorptive Extraction (SBSE) [2] was evaluated for the enrichment of hop-derived solutes in wort and beer. SBSE offers an effective, easy-handling and low-cost opportunity for the isolation of organic solutes from aqueous matrices. A small stir bar, coated with polydimethylsiloxane is placed directly in the sample and stirred for minutes. After sampling, the stir bar is placed in a thermal desorption unit for subsequent CGC separation under mild conditions. Several hop-derived solutes can be elucidated and identified in this way. Alternatively, the stir bar can be desorbed by a liquid followed by HPLC analysis. This allows analysis of some of the thermostable hop derived solutes. Both approaches are complementary in nature and give a quite complete profile of the hoppy flavour in beer. The SBSE approach has also been compared to the classical SPE-HPLC technique.

Table I. Hop α- and β-acids.

<table>
<thead>
<tr>
<th>Group “R”</th>
<th>α-Acids (1)</th>
<th>β-Acids (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_2$CH(CH$_3$)$_2$</td>
<td>Humulone (1a)</td>
<td>Lupulone (2a)</td>
</tr>
<tr>
<td>CH(CH$_3$)$_2$</td>
<td>Cohumulone (1b)</td>
<td>Colupulone (2b)</td>
</tr>
<tr>
<td>CH(CH$_3$)CH$_2$CH$_3$</td>
<td>Adhumulone (1c)</td>
<td>Adlupulone (2c)</td>
</tr>
</tbody>
</table>

Figure 1. Hop α- and β-acids.

Figure 2. Rearrangement of humulone (1a) to trans-isohumulone (21a) and cis-isohumulone (22a) during the wort boiling.

Table II. Mobile phase program for the HPLC method.

<table>
<thead>
<tr>
<th>Time [min]</th>
<th>A) [%]</th>
<th>B) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>95</td>
<td>4</td>
</tr>
<tr>
<td>32</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>50</td>
<td>65</td>
<td>35</td>
</tr>
<tr>
<td>60</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>62</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>63</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>66</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>
Sample preparation for GC and HPLC Analysis. The isooctane extraction was done by the method described in [1], the octyl solid phase extraction was described in [2].

For the stir bar sorptive extraction a 10 mm stir bar was added to 0.5 mL sample diluted with 0.5 mL deionized water and 0.05 mL phosphoric acid (85%w). The samples and standard solutions were stirred for 15 min. Stir bars were removed with forceps, rinsed briefly in distilled water.

For HPLC analysis the stir bar was eluted with 1 mL of a mixture of acetonitrile: water: (50:50)(v/v). 20μl eluate was injected in the HPLC.

RESULTS AND DISCUSSION
The isooctane extraction has frequently been used to isolate beer bitter substances. However the samples of this standard preparation for photometry and HPLC methods [1] had a low amount of matrix, the procedure has higher costs with respect to time, manpower and organic solution waste. The alternative solid phase extraction method with a C8 SPE cartridge and an eluate mixture of acetonitrile :methanol :water :phosphoric acid is a rapid and easy-handling technique, but there are still some reproducibility problems and there are more matrix effects compared to the liquid/liquid extraction method. Very pure chromatograms with excellent peak shapes and resolutions were obtained using the new rapid SBSE technique. Figure 3 shows chromatograms from a beer sample using the different methods.

Figure 3. Comparative chromatograms for sample preparation with different techniques.
A chromatogram of an injected 30 ppm iso-humulone standard is presented (Fig. 4). Calibration functions were recorded in the linear range from 10 to 100 ppm total iso-humulone (Fig. 5). The RSD (n=4) for the standards ranged from 1% to 3%.

Figure 4. Chromatograms of an iso-humulone standard with 30ppm total, Peaks in following order: cis-isocohumulone (22b); trans-isocohumulone (21b); cis-isoadhumulone (22c); cis-isohumulone (22a); trans-isoadhumulone (21c); trans-isohumulone (21a).

Figure 5. Calibration curve for the total iso-humulone amount using the SBSE technique.
Samples taken during the brewing process were analyzed with the Twister. The following chromatograms show the results from different steps during wort boiling (Fig. 6-8). The significant increase of the α-acid and iso-α-acid amounts can be observed in the HPLC chromatograms.

Figure 6-8. Chromatograms of the increasing amounts of iso-humulone and α-humulones during wort boiling. Peaks in following order: cis-isocohumulone (22b); trans-isocohumulone (21b); cis-isoadhumulone (22c); cis-isohumulone (22a); trans-isohumulone (21a); cohumulone (1b); adhumulone (1c); humulone (1a).
Several beers and hop extracts have been analyzed successfully using Twister when compared to existing methods such as SPE sample preparation with following UV/vis detection, and the established Continuous Flow Analyzer (CFA) method [4] based on an automated liquid/liquid extraction and UV/vis detection (Fig. 9). The method was applied to investigations of samples with complex matrices which can be found especially in wort samples. The CFA method, however, exhibits satisfactory agreement with the other methods only for the beer sample. The wort samples shows higher results caused by interference from the matrix.

Figure 9. Investigations of beer and wort samples using different techniques.

CONCLUSIONS
Stir bar sorptive extraction is a very good alternative to the classical iso-octane extraction or the SPE sample preparation for bitterness analysis in beer and hop products. In comparison with the other techniques, precision is improved and sample preparation costs and time are reduced. SBSE without any doubt has increased the options available to brewers to control the flavor and taste of beer.

REFERENCES