Blood Alcohol Analysis Using an Automated Static Headspace Method

Vanessa R. Kinton, Edward A. Pfannkoch, and Jacqueline A. Whetcavage
Gerstel, Inc., 701 Digital Drive, Suite J, Linthicum, MD 21090, USA

ABSTRACT
Forensic laboratories face the need to analyze many samples of human blood and body fluids for alcohol content. The large number of samples that require quantification of ethanol in these facilities creates a challenge for the methodology employed. Factors that need to be considered are sample throughput, resolution, and carryover. A successful method for these analyses should be fast, precise, and accurate.

Current methods used in these analyses use a gas chromatograph coupled to a static headspace sampler and flame ionization detector (FID). The x, y, z robotic autosampler used in this study has a capacity of up to 128 headspace samples, which is a distinct advantage compared to other samplers commercially available.

Results obtained with the instrument and methodology described in this report meet the specifications set by the California Department of Justice Blood Alcohol Operating Procedures (Title 17). A dual-column, dual-FID blood alcohol analysis system that can be used for confirmation of ethanol peaks was also tested and produced results with good precision (below 5 % RSD).
INTRODUCTION

Headspace gas chromatography (HS-GC) for determination of ethanol content of blood is widely used by forensic labs to test automobile drivers charged with DUI (driving under the influence). The method originates from 1964 when G. Machata [1] published the first use of HS-GC for quantitative analysis.

The method includes the use of an internal standard (IS) compound. Tert-butanol or n-propanol may be used as internal standards for the alcohol in blood determinations. The choice of which internal standard to use depends on the type of column utilized in the GC instrument.

Blood is a very complex matrix that varies depending on the individual. The salt or lipid content may be different and headspace analysis with the use of an IS provides fast measurements that can be automated. In this study, a GERSTEL MPS 2 robotic autosampler with a headspace gas-tight syringe was used to analyze ethanol solutions in different concentrations.

In this study, we developed a method that meets the specifications set by the California Department of Justice Blood Alcohol Operating Procedures (Title 17) [2]. We also configured and tested a separate dual-column/dual-FID system that adds confirmation because of the different elution order of ethanol on each column.

EXPERIMENTAL

Instrumentation

Analyses were performed on a 6890 GC equipped with single or dual FID’s (Agilent Technologies), and a GERSTEL MPS 2 multipurpose sampler configured for static headspace injection.

Reagents

- Ethyl alcohol, absolute, 200 proof, 99.5%, A.C.S. reagent grade
- Methyl alcohol, 99.8%, A.C.S. reagent grade
- Acetone 99.5%, A.C.S. reagent grade
- n-Propanol (1-propanol) 99.5% A.C.S. reagent grade (IS)
- Isopropanol (2-propanol), 99.5%, A.C.S. reagent grade
- Blood alcohol mix resolution control standard (Restek, # 36256). 0.100 g/dL in water of 8 compounds: acetaldehyde, acetone, acetonitrile, ethanol, ethyl acetate, isopropanol, methanol and methyl ethyl ketone (MEK).

Preparation of standards

Secondary standard (SS). 0.25 mL of absolute (200 proof) ethanol and 0.125 mL of n-propanol pipetted into a 100mL volumetric flask and diluted with bottled water.

Quality control standard (QC). 0.15 mL of absolute (200 proof) ethanol and 0.125 mL of n-propanol pipetted into a 100 mL volumetric flask and diluted with bottled water.

Resolution standard (RS). 0.25 mL of absolute (200 proof) ethanol, 0.1 mL methanol, 0.1 mL isopropanol, 0.01 mL acetone and 0.125 mL n-propanol pipetted into a 100 mL volumetric flask and diluted with bottled water.

Blank standard. 0.125 mL of n-propanol pipetted into a 100 mL volumetric flask and diluted with bottled water.

All standards above were diluted 1:6 in bottled water prior to use. 500 μL of standard was then pipetted into a 20 mL headspace vial.

1 mL of 1000 μg/mL internal standard (n-propanol) and 1mL of the blood alcohol mix resolution control standard (Restek, # 36256, Lot# A034323) was diluted in 18 mL bottled water. 4 mL of standard was then pipetted into a 20 mL headspace vial. All vials were crimp-capped using blue silicone/PTFE septa.

Calculations

\[K = \frac{(AIK \times CKE)}{AKE} \]

\[CO = \frac{(AUE \times AIK \times CKE)}{(AIU \times AKE)} \] \hspace{1cm} or \hspace{1cm} \[CO = \frac{AUE \times K}{AIU} \]

Where:

- \(K \) = response factor
- \(CO \) = concentration of ethanol in the unknown sample
- \(AUE \) = peak area of ethanol peak in unknown sample
- \(AIK \) = peak area of internal standard peak in calibration standard
- \(CKE \) = concentration of ethanol in secondary alcohol standard
- \(AIU \) = peak area of internal standard peak in unknown sample
- \(AKE \) = peak area of secondary alcohol standard
Quality control criteria for California compliance
- Calibration runs consist of 6 secondary standards followed by a resolution standard. The calibration constant K is then calculated for each of the 6 secondary standards and the mean is calculated. The value of the K constant for each of the six determinations must fall within ± 1.5% of the mean value.
- The results for the resolution standard shall indicate a resolution of 0.01% acetone in the presence of 0.20% ethanol.
- Analysis runs consist of a Blank (water, no IS) and standards (SS, QC and RS) followed by the sample set (2 replicas per sample) followed by two additional standards (QC and SS).
- The result of the blank sample should be less than 0.01%.

RESULTS AND DISCUSSION
California DOJ Blood Alcohol Operating Procedure (Title 17). Figure 1 shows the instrument used in this study. It consists of a GERSTEL MPS 2 autosampler that can be programmed to be used with headspace syringes. For this study we used a 2.5 mL syringe that can also be programmed to inject different volumes (recommended volumes from 0.25 mL up to 2.5 mL). The headspace syringe adaptor is heated and can be controlled to optimize the syringe temperature.

Figure 1. MPS 2 Headspace autosampler coupled to a 6890 Agilent GC.

Incubation of the samples is carried out in a heated agitator with six sample positions. GERSTEL MAster software will “prep-ahead” samples if equilibration times are longer than GC analysis times so there are always up to six samples incubating. This results in great time savings and excellent sample throughput. For this analysis we selected an incubation temperature of 65 °C and a syringe temperature of 70 °C. It is recommended to use a slightly higher syringe temperature as the sample is transferred from the vial to the syringe to avoid condensation.

Secondary and resolution standards were analyzed. An example chromatogram is displayed in Figure 2. It can be seen that there is no ethanol carryover in the blank and the IS reproduces well. Using the gas chromatograph in the isothermal mode, we were able to separate the alcohols present in the SS and also the compounds present in the resolution standard in approximately 3.5 minutes (Figure 3). The updated chromatographic conditions include the use of a capillary GC column instead of the packed column currently used for these analyses in California.

Figure 2. FID overlay of Blank/Internal Standard (IS), Resolution Standard and Secondary Standard (SS) for California Compliance.

Figure 3. FID trace of Resolution Standard for California Compliance.
In order to test the robustness of the method, 48 calibration sequences were run with the MPS 2 over a three month period using the parameters listed in Table 1. Using the K factor criteria all 48 sequences passed. Perturbations of the system during this 3 month period include changing the GC column, changing the syringe, and two power outages. An example of the K factor check is shown in Table 2. To test the accuracy of the method, reference samples with known alcohol concentrations were prepared; the alcohol content was calculated and found to be accurate.

Table 1. Method parameters for California compliance.

Agilent 6890

<table>
<thead>
<tr>
<th>Inlet:</th>
<th>Split/splitless, 100°C Split 1:5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column:</td>
<td>30m DB-ALC2 (Agilent) d₁= 0.53mm, d₂= 2.0μm</td>
</tr>
<tr>
<td>Oven:</td>
<td>isothermal, 40°C</td>
</tr>
</tbody>
</table>

MPS 2 Headspace

<table>
<thead>
<tr>
<th>Incubation:</th>
<th>65°C (15 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syringe:</td>
<td>2.5 mL, 70°C</td>
</tr>
<tr>
<td>Injection:</td>
<td>1 mL (500 μL/s)</td>
</tr>
</tbody>
</table>

Blood Alcohol Dual-Column Confirmation Method. We configured a system with dual complimentary alcohol columns from a single inlet and dual FIDs for blood alcohol analysis [3]. The dual system has an advantage since the order of elution is different on each column and therefore it adds confirmation of the peak identification. In order to verify the precision of the splitter (Figure 4) we installed two identical columns and checked the response of the secondary standard on both columns.

Table 2. Example of calculation and check of K factor.

<table>
<thead>
<tr>
<th>File name</th>
<th>EtOH Peak Area</th>
<th>n-Propanol (IS) Peak Area</th>
<th>K factor</th>
<th>-1.5% / +1.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>7230002</td>
<td>113206882</td>
<td>106875141</td>
<td>0.1794</td>
<td>Pass / Pass</td>
</tr>
<tr>
<td>7230003</td>
<td>116621856</td>
<td>109083941</td>
<td>0.1777</td>
<td>Pass / Pass</td>
</tr>
<tr>
<td>7230004</td>
<td>114897369</td>
<td>107497317</td>
<td>0.1778</td>
<td>Pass / Pass</td>
</tr>
<tr>
<td>7230005</td>
<td>111194673</td>
<td>104605854</td>
<td>0.1787</td>
<td>Pass / Pass</td>
</tr>
<tr>
<td>7230006</td>
<td>115948256</td>
<td>109036988</td>
<td>0.1787</td>
<td>Pass / Pass</td>
</tr>
<tr>
<td>7230007</td>
<td>114896941</td>
<td>107920646</td>
<td>0.1785</td>
<td>Pass / Pass</td>
</tr>
<tr>
<td>Average</td>
<td>114460996</td>
<td>107503314</td>
<td>0.1785</td>
<td>0.176 / 0.181</td>
</tr>
<tr>
<td>Std</td>
<td>1975014</td>
<td>1662204</td>
<td>0.0006</td>
<td></td>
</tr>
<tr>
<td>% RSD</td>
<td>1.73</td>
<td>1.55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. Dual-column dual-FID system used in the study.
Figure 5 shows that both retention time and peak area reproduce well and therefore the splitter appears to split the sample uniformly between the two columns. We tested 6 sequences; each sequence consisted of 1 blank, 6 SS and another blank. Using the K factor criteria all 6 sequences passed on both columns.

Once we were satisfied with the system performance, we used two columns with two different stationary phases. Using the parameters listed in Table 3 we analyzed the Restek resolution control standard. Figure 6 shows the chromatogram obtained for the resolution mix plus IS.

Table 3. Method parameters for dual-column dual-FID system.

Agilent 6890
- **Inlet:** Split/splitless, 150°C
- **Split 1:** Split 1:5
- **Column:** 30m DB-ALC1 (Agilent) $d_i = 0.32$mm, $d_f = 1.8$μm
- **Column:** 30m DB-ALC2 (Agilent) $d_i = 0.32$mm, $d_f = 1.2$μm
- **Oven:** Isothermal, 35°C

MPS 2 Headspace
- **Incubation:** 65°C (15 min)
- **Syringe:** 2.5 mL, 70°C
- **Injection:** 1 mL (500 μL/s)
Precision for 12 replicas of this analysis are listed in Table 4. [Note: while analyzing the resolution standard we found a late-eluting breakdown product of acetaldehyde. If acetaldehyde is included in a standard, we recommend watching for a late eluting carryover peak and if necessary, extending the isothermal run to approximately 20 min to check for the presence of the breakdown product.]

Table 4. Precision of 12 replicas using dual-column configuration.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Average peak area</th>
<th>Standard deviation</th>
<th>RSD [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALC1</td>
<td>ALC2</td>
<td>ALC1</td>
</tr>
<tr>
<td>Methanol</td>
<td>2321294</td>
<td>2628655</td>
<td>81681</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>12326272</td>
<td>13373526</td>
<td>534287</td>
</tr>
<tr>
<td>Ethanol</td>
<td>4958271</td>
<td>5519370</td>
<td>180264</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>9719454</td>
<td>10594110</td>
<td>379814</td>
</tr>
<tr>
<td>Acetone</td>
<td>31021477*</td>
<td>21991434</td>
<td>1350778*</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>11314551</td>
<td>481138</td>
<td>344806</td>
</tr>
<tr>
<td>n-Propanol</td>
<td>9320684</td>
<td>9919804</td>
<td>1711203</td>
</tr>
<tr>
<td>MEK</td>
<td>39378050</td>
<td>42850828</td>
<td>1904410</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>52394805</td>
<td>55868378</td>
<td>1904410</td>
</tr>
</tbody>
</table>

Conclusions
- The GERSTEL MPS 2 robotic autosampler is capable of delivering performance for blood alcohol analysis that meets or exceeds the California Title 17 Forensic Alcohol Analysis and Breath Alcohol Analysis performance criteria.
- Testing during a 3-month period showed good robustness and reproducibility.
- This instrumentation provides increased sample throughput by accommodating up to 128 samples and by using the “prep ahead” function to equilibrate samples.
- The GERSTEL MPS 2 autosampler also performed well when used with a dual column blood alcohol confirmation method.

References
[2] California Code of Regulations Title 17, Division 1, Chapter 2, Subchapter 1, Group 8 “Forensic Alcohol Analysis and Breath Alcohol Analysis”.

“*For research use only. Not for use in diagnostic procedures.”

The information provided for this product is intended for reference and research purposes only. GERSTEL offers no guarantee as to the quality and suitability of this data for your specific application.

Information, descriptions and specifications in this publication are subject to change without notice.