Applications of Mass Flow Controlled Multi Column Switching in On-Line Capillary GC/MS

Andreas Hoffmann, Ralf Bremer, Friedhelm Rogies
Gerstel GmbH & Co.KG, Eberhard-Gerstel-Platz 1, D-45473 Mülheim an der Ruhr, Germany

Jacques A. Rijks1,2,3, Jacek Staniewski2,3
1Foundation Education and Development of Chromatography, P.O. Box 4990, NL-5604 CD Eindhoven, The Netherlands
2Poznan Technical University, Institute of Chemical Technology and Engineering, Pl. M. Sklodowskiej-Curie 2, 60-965 Poznan, Poland
3Eindhoven University of Technology, Laboratory of Instrumental Analysis, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

\textbf{KEYWORDS}
PTV-injection, multi column switching, cryotrapping, capillary GC-MS, industrial applications

ABSTRACT

The separation and analysis of low concentrations of organic compounds in complex sample matrices, such as petroleum products, waste and drinking water, food, beverages and pharmaceutical products is a rather complex analytical problem. Current methods are hampered by insufficient resolution obtained by single capillary columns even if they have rather high plate numbers.

In this paper the potential of a combination of programmed temperature sample introduction and mass flow controlled multi column dual oven capillary gas chromatography and on-line mass spectrometry will be discussed and illustrated.

The effect of cold trapping in between the columns for components with a moderate volatility will be demonstrated for different applications dealing with the determination of trace impurities in various main products such as gasoline, aromatics, steroids and aniline.

INTRODUCTION

Due to ever increasing demands for resolution, sample volume and detection limits in capillary GC nowadays, multi column switching is becoming increasingly important. Essentially these problems are related to the complexity of the samples and the required compatibility of sample size, input band width, column properties, detector specifications and the actual concentrations of the components of interest in the sample.

To realize adequate analysis a number of clean-up and/or enrichment steps, or solvent elimination for diluted samples prior to separation, are needed in order to achieve the required separation efficiency and detection limits. The identification by an on-line coupled MS-system is another breakpoint in the analysis of such complex mixtures, particularly if they elute in low concentrations close together with a major component. Multi column switching is, therefore, an attractive approach to solve these problems, particularly if high and low concentrations have to be determined simultaneously.
The aim of this paper is to demonstrate the possibilities of a combination of temperature programmed sample introduction, multi column dual oven capillary GC, coupled on-line with mass spectrometry in order to enhance identification. The effect of cryotrapping at the inlet of the second column will be emphasized.

EXPERIMENTAL

Instrumentation. The system consists of a combination of a manual or automatic injection (HP 7673, Hewlett-Packard, Avondale, USA), a temperature programmable cold injection system (CIS-3, Gerstel GmbH, Mülheim an der Ruhr, Germany), a multi column switching system (MCS A or MCS P, Gerstel GmbH, Mülheim an der Ruhr, Germany), 2 Ovens (HP 5890 series II, Hewlett-Packard, Avondale, USA) with a cryotrap system (CTS-1, Gerstel GmbH, Mülheim an der Ruhr, Germany) in between and a mass selective detector (HP 5971, Hewlett-Packard, Avondale, USA) as illustrated in Figure 1.

![Figure 1](image.jpg)

Figure 1. Schematic diagram of the applied system consisting of a manual or automated injector, a temperature programmable cold injection system with septumless sampling head (2), a GC (3) configured with monitor-FID, column switching device (4) and MCS A or MCS P-pneumatic, connected via a heated transferline with included cryotrap (5) to a second GC (6) with a mass selective detector (7).
The pneumatics of the multi column switching systems used in this study are presented in Figure 2a and b.

Figure 2a. Schematic design of a dual column MCS P system. Solvent flush prior to the first column NV1 and MFC2, both open.

Figure 2b. Schematic design of the multi column MCS A system. Solvent flush via splitline, MFC3 open.

The switching pneumatics of both systems are mass flow controlled. The carrier gas flow of the MCS P system is mass flow controlled, the carrier gas flow of the MCS A system is pressure controlled.

RESULTS

Multi column switching is the most powerful approach for analytical and preparative separation of components which can hardly or not at all be separated in single column systems. This is illustrated below for 5 different applications all dealing with the analysis of trace components, which elute very close to or together with a major component or the determination of trace impurities in highly pure products.
Example 1. Multi column determination of benzene and 1-me-cyclopentene in gasoline.

Figure 3a. Precolumn chromatogram, 1 µl, splitless, marked components transferred to the main column.

Figure 3b. Main column chromatogram (TIC).

Analysis conditions.

System:

MCS A, 2 columns, 2 ovens, CTS, MSD

Columns:

Pre-column in GC 1 50 m HP-1 (Hewlett-Packard)

\[d_l = 0.32 \text{ mm} \quad d_i = 1.05 \text{ µm}. \]

Main column in GC 2 50 m Wg-11 (WGA)

\[d_l = 0.25 \text{ mm} \quad d_i = 0.2 \text{ µm}. \]

Pneumatics:

Carriergas	\(p_i = 100 \text{ kPa} \)	split x:50
Control flow	\(p_i = 30 \text{ kPa} \)	10 ml/min
FID	\(H_2 \) 30 ml/min	Air, 300 ml/min
\(N_2 \)	30 ml/min	

Temperatures:

CIS	40°C;	320°C;	12°C/s.
Oven 1	50°C;	280°C;	5°C/min.
Oven 2	50°C;	120°C;	5°C/min.
CTS	220°C;	-150°C;	12°C/s;
	220°C;	12°C/s.	

Detectors:

Monitor detector FID

Main detector MSD Scan 10-350 amu

Compounds:

1. 1-Me-Cyclopentene
2. Benzene
Example 2. Multi column analysis of m-, p-xylene in ethylbenzene.

Figure 4a. Precolumn chromatogram, 1 µl, split ratio x:30, marked compound flushed.

Figure 4b. Main column chromatogram, without CTS.

Figure 4c. Main column chromatogram, with CTS.

Analytical conditions.

System:
- MCS A, 2 columns, 2 ovens, with and without CTS

Columns:
- Pre-column in GC-1: 25 m Ultra-1 (Hewlett-Packard)
 - di = 0.32 mm
 - df = 1.02 µm
- Main column in GC 2: 30 m CP-Wax (Chrompack)
 - di = 0.32 mm
 - df = 1.2 µm

Pneumatics:
- Carrier gas He
 - pi = 130 kPa
 - split x:40
- Control flow
 - p1 = 50 kPa
 - 10 ml/min
- FID
 - H2, 30 ml/min
 - Air, 300 ml/min
 - N2, 30 ml/min

Temperatures:
- CIS: 60°C; 260°C; 12°C/s
- Oven 1: 70°C.
- Oven 2: 50°C; 180°C; 3°C/min.
- CTS: 200°C; 200°C; 12°C/s.
- 150°C; 12°C/s.

Detectors:
- Monitor detector FID
- Main detector FID

Compounds:
1. Benzene
2. Toluene
3. Ethylbenzene
4. m-Xylene
5. p-Xylene
6. Styrene
Example 3. Multi column analysis of by-products in steroids.

Figure 5a. Single column analysis in split (A) and on-column (B) mode.

Figure 5b. Multi column analysis (TIC), main compounds flushed.

Analysis conditions.
System:
MCS P, 2 columns, 2 ovens, MSD

Columns:
- Pre-column in GC 1: 10 m SB-1 (IAS) $d_i = 0.32$ mm $d_f = 0.1$ µm.
- Main column in GC 2: 50 m SB-1 (IAS) $d_i = 0.32$ mm $d_f = 0.1$ µm.

Pneumatics:
- Carrier gas: He 1.0 ml/min 10 ml/min
- Control flow: PC 1 0 ml/min 20 ml/min
- PC 2 0 ml/min 8 ml/min
- FID: H_2, 30 ml/min Air, 300 ml/min N_2, 30 ml/min

Temperatures:
- CIS: 60°C; \Rightarrow 320°C; 12°C/s.
- Oven 1: 50°C; \Rightarrow 280°C; 15°C/min.
- Oven 2: 50°C; \Rightarrow 280°C; 10°C/min.
- Transferline: 280°C.

Detectors:
- Monitor detector: FID
- Main detector: MSD Scan 30-450 amu

Compounds:
1. Steroid X
2. Steroid Y
Example 4. Multi column analysis of impurities in aniline.

Figure 6a. Precolumn chromatogram, 1 µl, split ratio x:10, marked compound flushed.

Figure 6b. Main column chromatogram (TIC), without CTS.

Figure 6c. Main column chromatogram (TIC), with CTS.

Analytical conditions.

System:
MCS A, 2 columns, 2 ovens, with and without CTS

Columns:
- Pre-column in GC-1 25 m OV-17 (home made)
 \[d_i = 0.32 \text{ mm} \quad d_f = 1.0 \mu \text{m}. \]
- Main column in GC 2 50 m HP-1 (Hewlett-Packard)
 \[d_i = 0.32 \text{ mm} \quad d_f = 1.05 \mu \text{m}. \]

Pneumatics:
- Carriergas He \[p_i = 60 \text{ kPa} \quad \text{split} \times 15 \]
- Control flow \[p_c = 45 \text{ kPa} \quad 10 \text{ ml/min} \]
- FID \[H_2, \text{ 30 ml/min} \quad \text{Air, 300 ml/min} \quad N_2, \text{ 30 ml/min} \]

Temperatures:
- CIS 60°C; \[\beta 260^\circ\text{C}; \quad 12^\circ\text{C/s}. \]
- Oven 1 50°C; \[\beta 200^\circ\text{C}; \quad 10^\circ\text{C/min}. \]
- Oven 2 40°C; \[\beta 260^\circ\text{C}; \quad 10^\circ\text{C/min}. \]
- CTS 220°C; \[\gamma 150^\circ\text{C}; \quad 12^\circ\text{C/s}; \]
 \[\gamma 220^\circ\text{C}; \quad 12^\circ\text{C/s}. \]

Detectors:
- Monitor detector FID
- Main detector MSD Scan 10-300 amu

Compounds:
1. Benzene
2. Cyclohexane
3. Cylohexylamine
4. Cyclohexanol
5. Phenol
6. Aniline
7. Toluidine
8. Nitrobenzene
9. Dicyclohexylamine
Example 5. Multi column analysis of impurities in styrene.

Analytical conditions.
System:
MCS A, 2 columns, 2 ovens, CTS

Columns:
- Pre-column in GC-1: 25 m Ultra-2 (Hewlett-Packard)
 - $d_i = 0.32$ mm, $d_f = 0.52$ µm.
- Main column in GC 2: 30 m DB-Wax (Restec)
 - $d_i = 0.32$ mm, $d_f = 0.25$ µm.

Pneumatics:
- Carrier gas He: $p_i = 120$ kPa, split x:30
- Control flow: $p_c = 65$ kPa, 10 ml/min
- FID: He, 30 ml/min, Air, 300 ml/min, N₂, 30 ml/min

Temperatures:
- CIS: 60°C, 260°C, 12°C/s.
- Oven 1: 60°C, 150°C, 5°C/min.
- Oven 2: 40°C, 70°C, 5°C/min, 180°C, 10°C/min.

Detectors:
- Monitor detector: FID
- Main detector: FID

CONCLUSIONS
Mass flow controlled dual oven multi column switching in combination with on-line coupled MS is a user friendly, very powerful tool for the analysis of complex samples with a wide range of volatilities, polarities and concentrations. High quality mass spectra are obtained after enrichment of volatile trace components.

Cryotrapping at the inlet of the analytical column results in a significant improvement of the separation of critical peak pairs and the reproducibility of the analysis.